Modeling regional crop GPP by upscaling flux data with satellite sun-induced chlorophyll fluorescence

Yongguang Zhang

Nanjing University, China

AsiaFlux & ChinaFlux Workshop, August 20, 2017

(traditional) Vegetation remote sensing

- Focused on vegetation indices indicating "greenness"
 - ~ Biomass x Chlorophyll content
- **Reflectance** based vegetation indices are related only to potential photosynthesis

Sun-induced chlorophyll fluorescence

- Fluorescence is an emission signal from the surface
- Fluorescence is a much better predictor of actual photosynthetic activity, not potential ones

1.1 Chlorophyll fluorescence (SIF)

Pathways of solar energy after absorption by chlorophyll:

- Part of the energy is used for photochemical processes and photosynthesis resulting in ecosystem gross primary production (GPP).
- Part of the energy is dissipated as heat.
- A remaining fraction is re-emitted as fluorescence.
- Under natural conditions, fluorescence and photosynthesis are positively correlated → a measurement of fluorescence can be related to photosynthetic activity.

Global SIF Data Sets

GOSAT, GOME-2, SCIAMACHY, OCO-2 ...

	GOSAT	GOME-2	SCIAMACH	OCO-2	TROPOMI	FLEX
			Y			
起始时间	2009年6月	2007年1月	2002-2012	2014年7月	2016年	~2022年
过境时段	13:30	9:30	9:30	13:15	13:30	10:00
波段	757-775 nm	650-790 nm	650-790 nm	757-775 nm	675-775 nm	650-780 nm
空间采样方式	间断	连续	连续	间断	连续	连续
像元大小	直径10 km	$40 \times 80 \text{ km}^2$	$30 \times 240 \text{ km}^2$	$1.3 \times 2.25 \text{ km}^2$	$7 \times 7 \text{ km}^2$	$300 \times 300 \text{ m}^2$
空间分辨率	$2 \times 2^{\circ}$	$0.5 \times 0.5^{\circ}$	1×1°	1×1°	0.1×0.1 °	$300 \times 300 \text{ m}^2$
提取时对云的敏感性	低	高	高	非常低	中	低
每天晴空观测像元数	1300	3500	900	∼450,000	∼400,000	/

Global SIF Data Sets

Modeling ecosystem GPP with SIF

• Empirical statistical approach (see Guanter[#], Zhang[#] et al., PNAS, 2014)

Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

Luis Guanter^{a,1,2}, Yongguang Zhang^{a,1}, Martin Jung^b, Joanna Joiner^c, Maximilian Voigt^a, Joseph A. Berry^d, Christian Frankenberg^e, Alfredo R. Huete^f, Pablo Zarco-Tejada^g, Jung-Eun Lee^h, M. Susan Moranⁱ, Guillermo Ponce-Camposⁱ, Christian Beer^j, Gustavo Camps-Valls^k, Nina Buchmann^I, Damiano Gianelle^m, Katja Klumppⁿ, Alessandro Cescatti^o, John M. Baker^p, and Timothy J. Griffis^q

• Hybrid methods based on process-based models

The Problem

High bias in GPP modeling from dynamic vegetation models

Beer, et al., 2010, Science

Causes of GPP bias

Model structure error

- Canopy radiative transfer
- Photosynthesis-stomatal conductance
- Canopy integration
- Model parameter uncertainty
 - Maximum rate of Rubisco carboxylation (Vcmax)

Bonan et al., 2011, JGR-Biogeosciences

The Problem

The most influential model in the carbon cycle research

FvCB model

$$W_{c} = \frac{V_{cmax}(c_{i}-\Gamma^{*})}{c_{i}+K_{c}(1+O_{i}/K_{o})}$$
$$W_{j} = \frac{J_{max}(c_{i}-\Gamma^{*})}{4(c_{i}+2\Gamma^{*})}$$

Two key metabolic variables

- •Vcmax: Rubisco activity
- •Jmax: Electron transport rate

The Problem

FvCB model

Farquhar et al. (1980)

there are two key parameters which, although often correlated in vivo, show important genotypic and phenotypic variation. These are the RuP₂ carboxylase capacity of the leaf $(V_{c_{max}} = \rho k_c E_t)$ and the electron transport capacity $(J_{max} = \rho j_{max})$. The way in which these two capacities vary, absolutely, and in ratio may well be a key to our understanding of the ecophysiology of plants.

Determine the key metabolic variables

•Vcmax: Rubisco activity

•Jmax: Electron transport rate

Contant Vcmax assumed for each PFT in models

What: Constrain GPP modeling with process model

- **How:** Optimize photosynthetic capacity parameter (V_{cmax})
- With: Satellite-based fluorescence data
- And: A coupled photosynthesis-fluorescence model (SCOPE)

SCOPE

Soil Canopy Observation of Photosynthesis and the Energy balance

2. Methods

Flux sites

Homogeneous

Corn Soybean

Inversion of V_{cmax}

Link fluorescence to V_{cmax}

2. Methods

Inversion of V_{cmax}

Sensitivity of fluorescence to V_{cmax}

Zhang et al., 2014, GCB 14

3. Results

Hourly GPP: fixed V_{cmax} vs. $V_{cmax} = f(SIF)$

- Model-based inversion of crop photosynthetic capacity (Vcmax) from GOME-2 SIF data.
- Substantial improvement of GPP modeling with estimated seasonal Vcmax

Zhang et al., 2014, GCB

3. Results

Light Use Efficiency for photosynthesis (LUEp):

How SIF relates to independently estimation of V_{cmax} at seasonal scale?

Zhang et al., RSE (under review) 17

Zhang et al., RSE (under review)

18

4. Continuing work

Another example from Harvard Forest

Field measurements of SIF during the growing season of 2013 (Yang et al., 2015)

Zhang et al., RSE (under review) ¹⁹

4. Continuing work Upscaling to a bigger scale

Regional V_{cmax} for C4 crop during the growing season

Vcmax for C4 Crops during 2009

Seasonally and spatially varied for C4 crop

4. Continuing work Upscaling to a bigger scale

Regional V_{cmax} for C3 crop during the growing season

Vcmax for C3 Crops during 2009

Seasonally and spatially varied for C3 crop

Modeling regional GPP with V_{cmax} from SIF

4. Continuing work Validation

"Validation": comparison with GPP scaled from SIF and NPP data from agricultural inventories by USDA

Zhang et al. (under review)

"Validation": comparison with GPP scaled from SIF and NPP data from agricultural inventories by USDA

24

"Validation": comparison with GPP derived from agricultural inventories by USDA

 $\Delta GPP = GPP_{sim} - GPP_{inv}$

Modeling regional GPP with constant Vcmax

Modeling regional GPP with Vcmax from SIF

Zhang et al., RSE (under review)

25

5. Summary

1. Satellite fluorescence retrievals could be a proxy of seasonally-varying maximum rate of carboxylation (V_{cmax})

2. A potential to **parameterize** V_{cmax} seasonally from satellite fluorescence data for terrestrial biosphere models

3. **Discussion**: What is the difference between Vcmax derived from DVMs and leaf measurements?

You are welcome to join SIF Session at AGU 2017:

Session Title: Chlorophyll fluorescence as a proxy of photosynthesis: from field to satellite measurements, modeling and applications (Kaiyu Guan, Yongguang Zhang, Joanna Joiner, and Xi Yang)

Thank you for your attention !

Fs yield and photochemical yield related to Vcmax

Modelled Fs yield Φ F, photochemical yield Φ P, photosynthesis A, and Φ F multiplied by irradiance, as functions of irradiance, for the following values of Vcmax: 10, 30, 50, 70 and 90

2. Methods

Incorporation of optimized V_{cmax} into SCOPE and comparison with fixed V_{cmax} in terms of GPP and other parameters

Evaluation

3. Results

Sensitivity of fluorescence to V_{cmax}

LUT -> Vcmax = f (SIF, t)

2/3 sensitivity of new version compared to old one